Linguistic, Quantitative, and Executive Predictors of Learning Mathematics in a Second Language

Anne Lafay
Helena P. Osana Sophie Lemieux Marion Valat

Introduction

In Quebec, Canada, almost 15\% of bilingual children aged 10-14 may be instructed in a language that is not spoken at home (Statistics Canada, 2016).

- Are children learning mathematics in a second language disadvantaged, or does a second language create an enriched exposure to mathematica concepts ? (Bialystok, 2009; Clarkson, 1992; Van Rinsveld et al., 2015).

Aims

To understand how linguistic, quantitative, and executive precursors are implicated in second grade children's mathematical development.

- To clarify how developmental numeracy pathways are affected when the language of instruction is different from the language used in the home to first expose children to numeracy concepts.

Framework

Pathways Model of Numeracy Development (LeFevre et al., 2010) : three cognitive precursors (linguistic, quantitative, and executive factors)

Anne Lafay: anne.lafay@concordia.ca Helena P. Osana: helena.osana@con
Marion Valat: valat.ortho@gmail.com

Method

Context

- Language Learning and Mathematics Achievement (LLaMA) Project
- Collaboration with J.-A. LeFevre (Carleton University), S.-L. Skwarchuk (University of Winnipeg), J. Wylie (Queen's University Belfast), and V. Simms (University of Ulster)

Participants

- Second-grade students ($n=81$) in 6 francophone schools in Quebec, Canada Unilingual francophone ($n=50$) receiving mathematics instruction in French
- Bi - or multilingual ($n=31$); Home language: English (16 students), Other (15 students)

	Unilingual Children	Bilingual Children	t-test	χ^{2}
Age in months	95.0 (5.4)	95.7 (4.8)	Non significant	
Gender	Male: 46\% Female: 54\%	Male: 35.5\% Female: 64.5\%		Non significant
Family Income	Very low: 20\% Low: 20\% Medium: 15\% High: 10\% Very high: 35 \%	$\begin{aligned} & \hline \text { Very low: 12\% } \\ & \text { Low: } 22 \% \\ & \text { Medium: } 11 \% \\ & \text { High:22\% } \\ & \text { Very high: } 33 \% \\ & \hline \end{aligned}$		Non significant

Procedure

- Individual testing sessions (1-1.5 hours)

Measures
Outcomes: Number line estimation arithmetic fluency, and word-problem solving
\qquad Figure 2. Number line Figure 2. Number
estimation task

[^0]

- Executive: Verbal short-term and working memory, visuospatial short-term and working memory
Quantitative: Subitizing
Symbolic Math Predictors
- Linguistic \& Quantitative: Math vocabulary
- Quantitative: Number comparison

Results

Comparison (t-tests)

Table 2. Mathematics outcomes statistics		
	Comparison	\boldsymbol{t}-test
Number line position	bilingual > unilingual	.082
Arithmetic fluency	bilingual $=$ unilingual	.220
Word-problem solving	bilingual $=$ unilingual	.454

Prediction

Discussion

- Math vocabulary is predictive in arithmetic fluency, regardless of language group.
- Math vocabulary is predictive in number line estimation and in word problem solving in unilingual children.
- Next steps:
- To compare our pattern of results with those of Ottawa and Winnipeg - To establish developmental patterns by testing the same children one year later (2018-19)

[^0]: Measures: Cognitive Predictors

